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A new general purpose algorithm for multidimensional integration is described. It is an 

iterative and adaptive Monte Carlo scheme. The new algorithm is compared with several 
others currently in use, and shown to be considerably more efficient than all of these for a 
number of sample integrals of high dimension (n 2 4). 

1. I~VTRODUCTION 

One of the most important computational problems facing physicists today is the 
evaluation of multidimensional integrals with complicated and sometimes very 
poorly behaved integrands. To cite but a single example drawn from elementary 
particle theory, integrals over four or more variables are routinely encountered in the 
computation of scattering amplitudes using Feynman perturbation theory [I]. 
In this note a new algorithm for multidimensional integration is described. It employs 
an iterative and adaptive Monte Carlo scheme. 

Among the characteristics of this algorithm are: 

(a) A reliable error estimate for the integral is readily computed. 
(b) The integrand need not be continuous for the algorithm to function and, 

in particular, step functions pose no problem. Thus integration over hypervolumes 
of irregular shape is straightforward. 

(c) The convergence rate is independent of the dimension of the integral. 
(d) The algorithm is adaptive. It automatically concentrates evaluations of the 

integrand in those regions where the integrand is largest in magnitude. 

Characteristics (a)-(c) are common to all Monte Carlo methods [224]. Characteristic 
(d) is the single most important feature of this algorithm. The major problem in 
multidimensional integration is the exponential growth with increasing dimension of 
the integration volume over which the integrand must be sampled. For example, 
applying any five-point integration rule (e.g., Gauss-Legendre integration) along each 
coordinate axis of a nine-dimensional integral requires 5g - 2 x IO6 evaluations 
of the integrand-a formidable number for all but the simplest integrands. Thus any 
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general purpose integration algorithm for use in high dimensions should be adaptive. 
In Section 2 we briefly review the general features of Monte Carlo integration [2-4] 

and previous work using this approach. In Section 3 we describe the new algorithm 
for integration over a single variable. The method is generalized for use in n dimensions 
in Section 4. Finally, in Section 5, we compare the performance of this algorithm 
with a number of others currently in use. It is shown to be considerably more efficient 
for several sample integrals of high dimension (n 2 4). In the Appendix we discuss 
some simple modifications of the basic approach which may improve it in particular 
applications. 

2. MONTE CARLO INTEGRATION 

Consider the integral of a function of Iz variables x = (xi ,..., x,) over a volume fin: 

I= I dxf (4. 52 

If it4 points (x) are randomly selected from a distribution of points in Sz with density 
p(x), it is easily shown that the integral is approximated by 

where the probability density function is normalized to unity: 

I dxp(x) = 1. 
R 

The quantity S(l) is expected to fluctuate about the true value of the integral as different 
sets of M random points are chosen. The variance of this fluctuation is given by 

02 = is Q dx g - [s, dxf(x)]“i M-l. 

For A4 large, this quantity is approximated by 

~2 ~ P’ - (S(l))2 
M-l ’ (2) 

where 
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The standard deviation u indicates the accuracy of W) as an estimate of I. Note that 
reliable estimates of the variance are possible only if the integral 

J‘ dx f”(x) __- 
R PC4 

is finite, though even if it is not, W) may still approximate I on the average. 
There are a number of techniques used to reduce the variance a2 for fixed M. Two 

of the more popular methods used in multidimensional integration are: 

(a) Importance sampling. Here the density p(x) is varied to reduce a2. As is well 
known, the optimal variance is obtained when 

Thus when using importance sampling function evaluations are concentrated where 
the integrand is largest in magnitude (whether or not it is flat there). 

(b) Stratzjied sampling. To reduce the variance, the integration volume can be 
subdivided into N smaller volumes of varying sizes. Then a Monte Carlo integration 
is performed in each subvolume using M/N random points. The variance is varied 
by changing the relative sizes and locations of the subvolumes and is minimized when 
the contributions to u2 from each subvolume are identical (=a2/N). Thus when using 
stratified sampling function evaluations are concentrated where the potential error is 
largest-i.e., where the integral is both large and rapidly changing. 

These and other methods of variance reduction appear to be inappropriate for 
general purpose integration algorithms as they require detailed knowledge of the 
integrand’s behavior prior to implementation. However, Sheppeyl has devised an 
iterative algorithm which uses information generated about the integrand during a 
Monte Carlo integration to reduce the variance in subsequent integrations. He 
employs stratified sampling. Initially the algorithm divides the n-dimensional inte- 
gration volume (a hypercube) into Nn identical hyprecubes using a uniform rectangular 
grid. A two-point Monte Carlo integration is performed in each hypercube generating 
a contribution to the total integral and to the variance. The variances from the 
hypercubes are then used to define new grid spacings along each axis for use in the 
next iteration, keeping the total number of hypercubes constant. Thus over a number 
of iterations hypercubes can be gradually concentrated where the variance was 
initially largest, and the variance reduced. 

This algorithm has enjoyed widespread usage in theoretical physics (see [l], for 
example) and is quite successful for many applications in two or more dimensions. 
The procedure’s greatest strength lies in its ability to adapt to the integrand being 
considered. However the extent to which it can adapt is determined by the number of 

1 A computer program using Sheppcy’s method is described in [5]. 
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grid increments along each axis (N), and N in turn is limited by the total number of 
integrand evaluations (M) allowed per iteration (n = dimensionality): 

M = 2N”. 

This limitation proves to be a serious handicap in high dimensions (e.g., M < lo6 
for II = 9 * N < 4), as will be illustrated in Section 5. 

A number of other techniques similar to Monte Carlo methods have also been 
suggested for multidimensional integration [2, 3, 6, 71. These quasi-Monte Carlo 
techniques generally converge faster than 1/M1/2 for analytic integrands. However 
they are not adaptive and so may require prohibitively large numbers of function 
evaluations in high dimensions when the integrand has sharp peaks. Furthermore it is 
not clear that they are able to integrate functions which are neither analytic nor even 
continuous. Also no simple estimate of the error is available in most cases. 

3. THE ALGORITHM IN ONE DIMENSION 

The restrictive relation between the numbers of increments and of function calls in 
Sheppey’s method can be avoided using importance sampling rather than stratified 
sampling to reduce the variance. Intuitively importance sampling seems the inferior 
of the two methods [3]. However, in practice the ability to adapt is the overriding 
consideration for high dimensions. 

Like Sheppey’s, the algorithm described here is iterative. To illustrate consider a 
one-dimensional integration: 

z= s l dxf(x). 
0 

Initially an M-point Monte Carlo integration is preformed with a uniform probability 
density (p(x) = 1). Besides providing estimates of the integral and the possible 
error (Eqs. (1) and (2)), the M integrand evaluations can also eb used to define an 
improved probability density for use in the next (M-point) Monte Carlo integration. 
In this fashion an empirical variance reduction can be gradually introduced over 
several iterations. 

There exist standard numerical techniques for generating lists of evenly distributed 
“pseudorandom” numbers. It is more difficult, however, to generate numbers from 
an arbitrary distribution with densityp(x). For present purposes it is natural that p(x) 
be a step function with N steps. The probability of a random number being chosen 
from any given step is defined to be a constant, equal to l/N for all steps (0 = x0 < 
... < XN = 1, dXi = xi - x,-1): 

p(x) = l/Ndx,, xi - Llxi < x < xi, i=l N, ,..., 
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The probability distribution is tailored to particular integrands simply by adjusting 
the increment sixes Axi . In practice N is limited by the computer storage space 
available and must be held constant from iteration to iteration (N = 50 to 100 
typically). 

Given M integrand evaluations, the probability distribution or, equivalently, the 
increment density is refined by subdividing each increment Axi into mi + 1 sub- 
increments, where 

mi = K (j; Axi/xf, Ax,) 
j 

and 

Thus each increment is subdivided into as many as (K + 1) subincrements (K is fixed 
at 1000 typically), and its contribution to the weight function increased in proportion 
to its contribution to the integral of / f(x)l, as required by (3). As it is desirable to 
restore the number of increments to its original value (=N), groups of the new 
increments must be amalgamated into larger increments, the number of sub- 
increments in each group being constant (to preserve the relative increment density). 
The net effect is to alter the increment sixes, while keeping the total number constant, 
so that the smallest increments occur where / f(x)/ is largest. The new grid is used and 
further refined in subsequent iterations until the optimal grid ahs been obtained 
(i.e., P?Zi = mj , i,.j = l,..., NJ 

In practice it is best to damp the subdivision algorithm thereby avoiding rapid, 
destabilizing changes in the grid from iteration to iteration. For example, this can be 
done by using [5] 

in place of (4). The parameter 01 determines the rate of convergence and is typically 
set between 1 and 2. 

The valuesfi must be discarded after each iteration because of storage limitations. 
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However, a cumulative estimate of the integral and its error can be made which uses 
every evaluation of the integrand: 

I. i = gC--+ 
i ui 

01 = [; $1-l". 

(5) 

Here Zi and ui2 are the integral and standard deviation estimated in iteration i using 
Eqs. (1) and (2). When the integrand has high, narrow peaks, Ii and ui are sometimes 
badly underestimated in the earliest iterations (before the algorithm has adapted). 
To partially correct for this effect, it may be better to replace Eqs. (5) by 

In any event the x2 

x2 N c (zi;i)2 or c (Ii T 02 c 

z z 12 ui 

(6) 

(7) 

should not greatly exceed the number of iterations (minus one). The algorithm cannot 
be trusted when it does. 

The number of iterations and the number of integrand evaluations per iteration 
needed clearly depend upon the complexity of the integrand and the accuracy being 
sought. In general it is best to use as few integrand evaluations per iteration as are 
required by the algorithm to converge smoothly to the optimal grid, at least until it 
has converged. Once the optimal grid has been found (approximately), the uncertainty 
(al) in the integral becomes roughly proportional to 1/M1j2, M being the number of 
integrand evaluations. 

4. THE ALGORITHM IN n DIMENSIONS 

The algorithm described above is easily generalized to handle integrals of arbitrary 
dimensionality. To illustrate the modifications consider 

A separable probability density function is adopted to limit data storage requirements: 
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In this case the optimal densities are easily shown to be2 

with a similar result for p,(v). Thus the one-dimensional algorithm can be applied 
along each axis but withfi (in Eq. (4)) defined by 

for the x axis and with an analogous definition for the y axis. The generalization to 
arbitrary dimension is obvious. 

5. NUMERICAL EXAMPLES 

We have encoded this algorithm in a Fortran IV program called VEGAS and 
compared its performance with a number of other multidimensional integration 
methods. A sampling of these results is presented in Tables I-V. 

The test integral for Tables I and II has a spherically symmetric Gaussian placed 
in the center of the integration region,: 

I, = (---&-I” 6’ dnx exp (- i (xi s ‘)’ ) , 
i=l 

where a = 0.1 and n = 4, 9. Partial results from several iterations of VEGAS are 
shown, illustrating the convergence of the algorithm (a = 2.0, 1.0 for II = 4, 9). For 
comparison estimates of 1, using crude Monte Carlo (p(x) = 1) and using Gauss- 
Legendre formulas along each axis are also exhibited. Of course VEGAS is far 
superior to crude Monte Carlo. VEGAS is also considerably more efficient than 
Gauss-Legendre integration (especially when n = 9), even though the integrand and 

a For example, this result can be obtained using functional methods (together with Lagrange 
multipliers to preserve density normalizations): 

6 
- m. 1 PYI + Ax 
UP* [ 

j,’ dx pz(x) + 4, Jo’ dYP,(Y)] = 0, 

-1 1 dy f”k Y) =1 
s PCW 0 

- + A, = 0, 
P,(Y) 

where the definition of 9 from Section 2 has been used. The final result follows immediately. 
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TABLE I 

Integration of a Single Gaussian in Four Dimensions” 

Per iteration 

Iteration 4 *i 

1 0.790 0.313 
3 0.970 0.063 
5 0.952 0.023 

10 1.008 0.016 

Crude Monte Carlo 

Vegas 

Cumulative 

I oi 

0.790 0.313 
0.977 0.059 
0.975 0.018 
0.994 0.007 

0.890 0.149 

No. of integrand 
evaluations 

l,ooo 
3,000 
5,000 

10,000 

10,000 

Gauss-Legendre Integration 

No. of points/axis Integral No. of integrand evaluations 

5 6.664 625 
6 0.164 1,296 

10 0.892 10,000 
13 1.008 28,561 

D The exact result is 1. 

all of its derivatives are analytic and bounded throughout the integration region, 
These examples illustrate the importance of using adaptive algorithms for integration 
in high dimension. 

In Table III VEGAS is compared with a code (SHEP) written by Sheppey and 
employing the algorithm described in Section 2. Here the test integral has two 
spherically symmetric Gaussians equally spaced along the diagonal of theintegration 
volume: 

The integration was done for n = 2,4,7, 9 with a = 0.1. The “Optimal standard 
deviation” quoted in this table is the standard deviation computed on any iteration 
after the optimal grid has been achieved. Results averaged over 15 iterations (Eqs. (6)) 
are also presented. 

For high dimensions (n > 4), VEGAS converges with far fewer function evaluations 
than SHEP. The number of function evaluations is independent of the number of 
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TABLE 11 
Integration of a Single Gaussian in Nine Dimensions” 

VEGAS 

Iteration 

Per iteration Cumulative 
No. of integrand 

1, Qt I or evaluations 

1 0.007 0.005 0.007 0.005 104 
3 0.643 0.070 0.612 0.064 3 x 10’ 
5 1.009 0.041 0.963 0.034 5 x to* 

10 I.003 0.008 1.001 0.005 106 
Crude Monte Carlo 0.843 0.360 105 

Gauss-Legendre Integration 

No. of points/axis Integral 

5 71.364 
6 0.017 

10 0.774 
15 1.002 

No. of integrand evaluations 

2.0 x 106 
1.0 x 10’ 

109 
3.8 x 10”’ 

a The exact result is 1. 

TABLE III 
Integration of a Double Gaussian in n Dimensions” 

VEGAS 

n=2 n=4 n=7 n=7 n=9 

No. function evaluations/iteration 20,000 20,000 32,000 160,000 100,000 
No. increments/axis 50 50 50 50 50 
Optimal standard deviation 0.007 0.02 0.05 0.02 0.06 
Cumulative result after 15 iterations 0.999 1.003 1.015 0.991 0.96 

1-0.002 rtO.006 10.015 10.007 rtO.04 

SHEP 

n=2 n=4 n=7 n=7 n=9 

No. function evaluations/iteration 20,000 20,000 32,768 170,000 3906,250 
No. increments/axis 100 10 4 5 5 
Optimal standard deviation 0.0008 0.03 1 .Ob 0.25 **e 
Cumulative result after 15 iterations 1.0001 1.004 * 0.90 ** 

*0.0002 10.008 * &0.04 ** 

0 The exact result is 1. 
b Algorithm would not converge. 
c Too large to be tried. 
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increments per axis in VEGAS, and so it is better able to adapt to the integrand in 
high dimension than is SHEP. Note that when the algorithms are equally adaptive 
(n f 4), SHEP performs as well as or better than VEGAS-as expected. 

In Table IV we compare VEGAS with the quasi-Monte Carlo methods suggested 
by Tsuda [7] and by Haselgrove [6]. The test integral is the most difficult considered 
by Tsuda [7]1 

where c is chosen such that f(0 ... 0) = 104. Neither of the quasi-Monte Carlo 
methods allows a simple error estimate and so this must be inferred from the conver- 
gence of the estimates of I. VEGAS is the superior algorithm though Tsuda’s method 
is almost as efficient when many function evaluations are employed. 

Finally, we present the results of a seventh order calculation (in Feynman pertur- 
bation theory) of part of the decay rate of orthopositronium into three photons. 

TABLE IV 

Integrand (10) Using VEGAS, Tsuda’s Algorithm [7], and Haselgrove’s Algorithm [6] 

No. of integrand 
evaluations 

TSUDA HASELGROVE 
VEGAS (n = 40) (4 

l,OCJO 1.083 f 0.085 1.248 11.019 
5,ooo 1.003 * 0.004 0.982 2.946 

10,000 l.ooo f 0.002 1.006 1.974 
20,000 1.000 + 0.001 1.002 1.484 

a The exact result is 1. The numbers for Tsuda’s method are from Table I in Ref. [7]. 

TABLE V 

Contribution of Ladder Graph to Decay Rate of Orthopositronium” 

VEGAS SHEP 
(n = 5) (n = 5) 

No. function evaluations/iteration 33,000 33,000 
No. increments/axis 50 7 
Optimal standard deviation 0.73 1.21 
Cumulative result after 15 iterations -5.82 31 0.22 -6.34 i 0.35 

a In units of ar,/rr. 
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The contribution presented here is from the ladder kernel (I’;, in Ref. [S]). No analytic 
result is known; the best numerical estimate is (-5.82 & .Ol) &Jr. Note that the 
integral contains a step function e(l - x1 - x2) and is therefore zero throughout half 
the integration volume. 

6. CONCLUSIONS 

It is clear that any general purpose multidimensional integration method should 
be adaptive. We have demonstrated that adaptive Monte Carlo methods are quiet 
effective, especially in high dimensions or with nonanalytic integrands where simple 
generalizations of the well-known one-dimensional methods are not so generally 
applicable. Of course, if the integrand is analytic and smooth, techniques such as 
Gauss-Legendre or quasi-Monte Carlo integration may frequently be superior to 
adaptive Monte Carlo integration, though for such integrands the latter is more than 
sufficient to obtain the three or four significant digits usually required in scientific 
applications. 

Note that this algorithm’s overhead and storage requirements grow only linearly 
with dimension, because separable distribution densities are employed. Thus it should 
be effective even in very high dimension (n = 20, 30,40,...). 

APPENDIX 

The use of importance sampling as described in Section 3 is formally equivalent to 
making the variable transformation x = g(y) 

1 = IO1 dxf(x) = IO1 dYf(dY)) d(Y), (11) 

with g’(v) = Ady))-l and performing a Monte Carlo integration with uniformly 
distributed points { yi>. The algorithm presented in Section 3 adjusts g’(y) such that 
g’(y) a / f(g(y))l-l thereby improving the Monte Carlo estimate of the integral. For 
some integrands it is possible to further reduce the variance through use of other 
well-known methods (stratified sampling, antithetic variates, quasi-random numbers,... 
[2]) applied to the smoothed integrand f( g( y)) g’(y) in (11). For example, rather than 
choosing M random points uniformly distributed on 0 < y ,( I, the sampling can be 
stratified by selecting two points in each of M/2 subintervals of [0, I]. 

The optimal definition of g’( y) may differ from that in Section 3 when additional 
variance reduction is used. Thus for stratified sampling, g’(y) should perhaps be 
chosen such that the variation (rather than the value itself) of g’(y) f( g(y)) in each 
subinterval is uniform over all subintervals. 

Trial runs of a modified VEGAS, incorporating stratified sampling, suggest 
considerable gains in efficiency in low dimensions (where the modified algorithm is 
very similar to Sheppey’s) but very little improvement in higher dimensions. Work is 
still in progress on this and similar modifications of VEGAS. 
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